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Abstract—This paper outlines a RX AMS Blind Clock and
Data Recovery (CDR) circuit for USB 2.0 Full-Speed and High-
Speed PHY, targeting both 12 and 480 Mbps operation using the
SKY130 process. Traditional PLL- and DLL-based CDRs are
vulnerable to long lock times, jitter, and PVT variation, which
makes them less suitable for digitally dominant, portable PHY
implementations. We implement a fully digital Sx oversampling-
based CDR approach with a novel Add-Drop FIFO (AD-FIFO)
that dynamically compensates for frequency offsets and input
jitter by inserting or removing bits as needed. The recovered
serial data stream is handed off to the RX Logic block. The design
is synthesized in Chisel using the Chipyard SoC framework
and evaluated through extensive simulations. Results demonstrate
correct bit recovery under +1000 ppm frequency drift, validating
the architecture’s robustness and suitability for USB PHYs.

The total area of the design is under 10,000 ym?, with the
AD-FIFO consuming 6674 pim?, CRD consuming 2730 zm?, and
oversampler consuming 328 ;m?. Simulations confirm correct
operation under +1000 ppm frequency drift, demonstrating the
design’s robustness and suitability for integration in low-power
digital USB PHYs.

Index Terms—blind clock and data recovery (CDR), digital
oversampling, low power design, SKY130

I. INTRODUCTION

Reliable clock and data recovery (CDR) is essential in USB
2.0 Hi-Speed (480 Mbps) and Full-Speed (12 Mbps) receivers,
where only the data signal is transmitted and no dedicated
clock is embedded. This creates fundamental challenges in
recovering timing information from the data stream, particu-
larly in the presence of clock drift, jitter, and long runs of
consecutive identical digits (CIDs) that degrade the timing
margin.

Traditionally, USB receivers typically employ analog Phase-
Locked Loops (PLLs) or Delay-Locked Loops (DLLs) for
CDR. PLLs track the phase and frequency of incoming signals
to align a recovered clock, while DLLs offer better jitter
performance by manipulating delay stages. [4] However, both
approaches require sensitive analog circuitry that is vulnerable
to PVT (process, voltage, and temperature) variations, exhibit
long lock times, and introduce significant design complexity.
These limitations are problematic for highly integrated or
portable systems that prioritize digital design, fast startup, and
power efficiency. [2], [3]

An alternative approach is digital oversampling-based CDR,
often referred to as ”’blind” CDR. This method oversamples
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the data stream by a factor (e.g., 3x, 5x, or higher) without
requiring phase-locked synchronization. The receiver can digi-
tally select an optimal sample within each bit period, avoiding
analog loops and reducing design risk.

This project presents a fully digital RX AMS CDR system
based on 5x oversampling at 2.4 GHz to support both USB
2.0 Hi-Speed and Full-Speed modes. To improve robustness,
an Add-Drop FIFO (AD-FIFO) is introduced to dynamically
handle missing or duplicate bits caused by jitter and frequency
offset. The design is implemented in Chisel and synthe-
sized using the Hammer flow for the SKY130 process from
Cadence, targeting low area, low power, and robust digital
integration.

II. EXISTING SOLUTIONS

A. PLL Based CDR
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Fig. 1. PLL-Based CDR

Phase-Locked Loop (PLL)-based CDRs are the standard ar-
chitecture in many high-speed serial protocols. These systems
rely on analog phase detectors, charge pumps, loop filters, and
voltage-controlled oscillators (VCOs) to track the frequency
and phase of the incoming signal. When locked, the recovered
clock is used to sample data near the center of the data
eye, minimizing bit errors. PLLs can achieve excellent jitter
performance, but their reliance on precise analog tuning makes
them sensitive to PVT (process, voltage, temperature) varia-
tion. Furthermore, the lock time of PLLs is non-negligible,
which poses challenges for bursty or packetized protocols such
as USB 2.0. [4], [5]



B. DLL Based CDR
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Fig. 2. DLL-Based CDR

Delay-Locked Loop (DLL)-based CDRs address some lim-
itations of PLLs by adjusting discrete delay lines rather than
oscillator frequency. They provide finer control of phase
resolution and are often used in interfaces requiring tight jitter
margins, such as DDR. However, DLLs still require analog
phase detection and delay-calibration circuitry and do not
eliminate the need for multiphase clock generation. These
circuits also remain susceptible to supply and temperature
variations, and their complexity makes them less feasible for
area-constrained USB PHY integration. [4], [5]

C. Digital Overampling CDR with AD-FIFO
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Fig. 3. BDR-Based CDR

In blind CDR, the incoming serial data stream is sampled
at a fixed multiple (e.g. 3x-8x) of the target bit rate using a
free-running high-speed clock. At each bit period, a digital
phase selector chooses the most reliable sample, ideally near
the center of the data eye. Since this method is feedforward
and fully digital, it offers fast lock times (zero or one bit
period) and is highly robust to PVT variation.

In this work, we implement a blind CDR design with 5x
oversampling. A key enhancement is the addition of an Add-
Drop FIFO (AD-FIFO) that dynamically inserts or removes
bits in response to accumulated timing mismatch caused by
frequency offset or jitter. This prevents the accumulation of
timing errors and ensures accurate data recovery. [1]

The key benefits of this approach include:

o lJitter Tolerance: Oversampling inherently provides ro-
bustness against timing jitter, as multiple samples per bit
period allow for accurate edge detection.

« Simplified Clocking: Utilizing a high-speed, free-running
clock for sampling reduces the complexity associated
with phase-locked clock recovery.

o Digital Processing: The oversampled data can be pro-
cessed using digital logic, simplifying the overall system
design and potentially reducing power consumption.

e Error Correction:The AD-FIFO resolves errors due to
frequency mismatch, improving long-run stability.
However, this method necessitates the generation and man-
agement of a high-frequency sampling clock (e.g., 2.4 GHz),
which can pose challenges in terms of clock distribution and
power consumption in other parts of the device.

III. DESIGN SPACE EXPLORATIONS
A. 5x vs 8x Oversampling

Oversampling rate is a central design tradeoff. Higher
oversampling (e.g., 8x) improves temporal resolution for
edge detection, providing finer phase granularity and wider
sampling margin. However, this improvement comes at a
cost: logic toggle activity increases substantially, impacting
dynamic power and timing closure. Higher oversampling also
necessitates a faster PLL or reference clock source, and deeper
datapaths to store and process multiple samples per bit. For
example, at 8x oversampling, a 480 Mbps data stream demands
a 3.84 GHz clock and significant pipeline depth.

Importantly, diminishing returns are observed beyond
5x oversampling—particularly when using a center-picking
method for bit recovery, where 5x is often sufficient for
reliable performance. This configuration balances detection ac-
curacy with system power and area constraints, while enabling
robust bit-level recovery across moderate jitter and drift.

B. Majority Voting vs Center-Picking Method

Two main strategies exist for selecting the correct sample
from the oversampled window: majority voting and center-
picking. Majority voting selects the most common value
among samples, but cannot track phase drift across bit periods.
This makes it vulnerable to frequency offset.

In contrast, center-picking detects transition edges and
aligns sampling to the middle of each bit eye, dynamically
adjusting phase. This approach is more resilient to drift and
Jitter.

C. Depth of Add/Drop FIFO

The depth of the AD-FIFO is another critical dimension. A
shallow FIFO (e.g., 8 cells) offers minimal area and latency but
limited drift tolerance, risking underflow or overflow. A deeper
FIFO (e.g., 25 cells, as used in our design) accommodates
large packet sizes and drift margins (e.g., £1000 ppm), and
ensures that the token does not reach FIFO boundaries under
worst-case conditions. However deeper FIFos also incur higher
costs in register count, routing complexity, and longer warm-
up durations.

We decide the FIFO depth based on:

o Maximum expected packet length (e.g., 8255 bits in

USB2.0)
o Worst-case allowable frequency offset (£500 ppm)
« Bit error tolerance due to jitter and transition ambiguity

N = (Max packet size) X A foftset + Nmargin (1)
(1]



Here, A fofser represents the maximum allowed frequency
offset (e.g., =500 ppm for USB 2.0) [3], and Npyarein provides
additional slack to absorb jitter and guard against insert/drop
overshoot. For a USB packet length of 8255 bits and Af =
500 x 107, this yields:

N = 8255 x 0.0005 + 8 ~ 12 cells 2)

In our implementation, we conservatively select a depth of
25 cells to provide capability to handle N drops of inserts at
once. [1]

D. Clamping vs. Soft Recovery in AD-FIFO Control

When the AD-FIFO token approaches its buffer limits, the
control logic needs to decide whether to halt corrective op-
erations or attempt speculative recovery. A clamping strategy
halts insert/drop activity at buffer boundaries, preventing fur-
ther corruption but potentially allowing drift-induced bit skew
to propagate. However, a soft recovery strategy instead could
continue operation by injecting fixed or inferred bits. This
minimizes protocol interruption, but risks transient bit errors.
Our implementation currently assumes clamping behavior as
the depth of the AD-FIFO can already tolerate the max USB
2.0 frequency offset and to not introduce any incorrect data
into the bitstream passed off to RX Logic.

E. Hysteresis in Insert/Drop Control

One potential strategy to improve noise resilience in in-
sert/drop signaling is to incorporate hysteresis into the phase
selection logic. This would require that a phase drift be
sustained over multiple sampling windows before triggering
a correction. It wouldhelp avoid overreaction to transient jitter
that might not represent true frequency offset.

However, in our implementation, hysteresis is intentionally
not applied. Blind CDR for USB 2.0 must respond rapidly
to clock drift and jitter, particularly in short packets with
limited timing margin. Introducing hysteresis would delay cor-
rection and allow drift-induced misalignment to accumulate,
potentially corrupting multiple bits before recovery begins. As
such, we opt for immediate response to transition-detected
insert/drop events. This helps ensure fast tracking even at the
cost of potential overcorrection in marginal cases.

F. Bit-Level vs. Byte-Level Recovery

Conventional oversampling CDRs often recover data in
byte-wide chunks using wide FIFOs and demux logic. This
increases silicon area and power. Our design recovers data at
the bit level using a 5x sampling scheme and token-controlled
bit-level AD-FIFO, which significantly reduces register count
and simplifies integration with serial RX logic.

IV. SUMMARY OF SPECS

o Data Rates Supported: 12 Mbps (Full-Speed), 480
Mbps (Hi-Speed)

o Oversampling Rate: 5x (2.4 GHz sampling clock)

o Sampling Clock Domain: 2.4 GHz (oversampler), 480
MHz (CRD and AD-FIFO)

« Jitter Tolerance: Up to +1000 ppm frequency offset
correction

« Bit Error Rate (BER): < 10~ 12

o FIFO Depth: 25 cells

« Total Core Area: 9969.m?

— AD-FIFO: 66741m>
— CRD: 2730um?
— Oversampler: 328,m?

o Technology: SKY130

V. DETAILED DESIGN METHODOLOGY
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Fig. 4. Top Level Design

The final architecture was selected after exploring various
oversampling ratios, FIFO depths, and sampling strategies, as
discussed in Section IV. The resulting design consists of three
primary blocks arranged in a feed-forward pipeline:

1) Oversampler (5x at 2.4 GHz): Captures a 5-sample
window of each incoming bit.

2) Coarse Data Recovery (CDR): Identifies transitions,
selects the best phase, and detects timing anomalies.

3) Add-Drop FIFO (AD-FIFO): Dynamically corrects
for frequency drift by adding or removing bits in the
recovered stream.

These blocks operate across two clock domains: the over-
sampler is driven at 2.4 GHz, while the CDR and AD-FIFO
are clocked at 480 MHz. The recovered serial data output is
synchronized for downstream RX Logic processing.

A. Oversampler Design

The oversampler captures 5 samples per bit period using a
2.4 GHz clock. A 5-stage D flip-flop (DFF) shift register is
used, with each DFF sampling the input in sequence due to
propagation delay.

Implementation Details:

 Instantiate five DFFs in series, forming a 5-stage shift
register.

e Clock all flip-flops with a 2.4 GHz sampling clock.

¢ Output samples as samples [0] to samples[4], with
samples [0] being the newest sample



B. Coarse Data Recovery Design
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Fig. 5. Coarse Data Recovery Design

1) Edge Detector: Detects bit transitions.

2) Phase Selector: Analyzes bit transitions and decides
which phase to sample. Moreover, it outputs the
ADD/DROP signals for the AD-FIFO.

3) Data Sampler: Selects the appropriate bit according to

the information of the phase.

1) Edge Detector: The purpose of this block is to detect
signal transitions and track whether the current sampling point
(determined by the phase_pointer) is early or late. This allows
us to determine the optimal sampling point within the 5-sample
window.

A transition is identified using XOR operations between the
last sample of the previous window and all samples from the
current window. The transition information gets stored in a
flag register.

Implementation Details:

if samples = prev then flag= flag_prev
f =Fill(5, prev[4])
flag = samples @ f

else

2) Phase Selector: The selector’s goal is to track these
transitions and reposition the sampling point toward the most
stable region of the bit period—typically the center of the eye
diagram—where the likelihood of bit errors is minimal.

The implementation follows a center-picking heuristic that
maps observed transition locations to empirically chosen sam-
pling positions. Specifically, the module inspects a 5-bit vector
flag that encodes where a transition occurred in the most
recent sample window. If an edge is detected at position O (the
earliest sample), the selector chooses position 2 for subsequent
sampling. Similarly, an edge at position 1 maps to position 3,
and so on. This mapping is designed to realign the sampling
point as close as possible to the midpoint of the stable region
following the transition.

The mapping is implemented using a priority-encoded con-
ditional logic structure that checks each bit of flag in order
and updates the selector output (sel) accordingly. If no edge
is detected, the previous sampling phase is retained to ensure
temporal consistency.

Implementation Details:

if edge at position 0 then sel =2
else if edge at position 1 then sel =3
else if edge at position 2 then sel =4
else if edge at position 3 then sel =0
else if edge at position 4 then sel =1

else sel =previous_sel

Edge Cases: In ambiguous patterns such as 11011 or
00100, transitions appear on both ends, causing multiple
detected edges. To mitigate this, we apply a voting mechanism
across adjacent windows. If there occur two edge transitions
in the same sampling window. The CDR chooses the bit with
greater than or equal to 3 occurrences in the window.

3) Data Sampler: Once the optimal phase is tracked, a 5-
to-1 multiplexer selects the corresponding sample from the
samples[0:4] array. By selecting the sample closest to
the ideal phase, the data sampler minimizes timing distortions,
such as jitter, that could cause errors at the bit boundaries. This
process significantly improves the reliability of data recovery,
ensuring the integrity of the transmitted signal.

Implementation Details:

e Use a 5-input MUX with the select line driven by
phase_pointer.

The output is the recovered serial data bit.

This MUX and phase pointer are clocked at 480 MHz
(bit rate), not at 2.4 GHz.

The output is latched in a DFF to ensure clean transitions
for downstream logic.

C. Add-Drop FIFO Design
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Fig. 6. AD-FIFO State Transition Diagram [1])

To handle frequency offset, the coarse data stream may
contain duplicated or missing bits. The AD-FIFO corrects
this by dynamically adjusting the data flow based on the
insert/drop signals issued by the CDR. This functionality
is essential in blind CDR systems where oversampling occurs
using a free-running clock without tight phase tracking.

In USB 2.0 high-speed mode, packet lengths can reach up
to 8255 bits, and the receiver must tolerate a frequency offset
of £500 ppm relative to the transmitter. Without correction,
errors accumulate and corrupt the decoded data stream.

The AD-FIFO mitigates these effects using a circular bit-
level buffer and a one-hot token pointer. The token determines



which FIFO cell is currently output to downstream RX logic.
Depending on the insert or drop request, the token either
advances or retreats through the buffer, effectively adding or
removing a bit without disrupting the FIFO ordering.

1) FIFO Architecture:

o Depth: 25 entries

o Data Structure: A shift-register FIFO

« Token: An index (register) indicating the output cell.

e Clock Domain: Entire AD-FIFO operates at 480 MHz,
synchronized to the bit rate.

2) Data Flow and Token Behavior: At each clock cycle, the
FIFO performs a left-shift operation to accept a new bit from
the Coarse Data Recovery (CDR) stage. Three cases determine
how the shift and token update behave:

1) Normal Operation:

o Data is shifted in from the left.
« Token remains unchanged.
e FIFO acts like a classic shift register.

2) Drop Case: Triggered when the same bit is detected
twice (i.e., transmitter is too fast).

o The input bit is shifted in normally.

o The token is decremented by 1 (unless already at
Z€ero).

« This skips the output of a duplicated bit.

3) Imnsert Case: Triggered when a bit is missed (i.e.,
receiver too fast).

« Enter a multi-stage state machine (Insertl, Insert2).

o Insertl: The inverse of the upcoming bit is inserted.
The token is incremented (unless at max).

o Insert2: Resume normal shifting with the next input
bit.

Drop =1 insert=1

or
Neither '

Fig. 7. AD-FIFO State Transition Diagram

3) Insert-Driven FSM Design: The insert operation re-
quires two sequential clock cycles to fully handle the data
injection. The FSM consists of the following states:

o sldle: Normal state. Handles drop or nominal shift.
Transitions to sInsertl if insert is asserted.

o slnsertl: Inserts a dummy bit (computed as the inverse
of the upcoming bit). Token is incremented.

o sInsert2: Shifts in the true incoming bit. Returns to
sIdle.
Token Clamping: To avoid out-of-bounds behavior, the
token is clamped at both ends:
e token
e token =

= 0 — Drop does not decrement.
depth-1 — Insert does not increment.

This ensures stability even under sustained drift.

VI. RESULTS
A. Verification

To validate correctness and robustness, we developed an
extensive set of testbenches targeting both unit-level and
full-system behavior. Each component of the blind CDR
pipeline—oversampler, coarse data recovery (CDR), and the
Add-Drop FIFO (AD-FIFO)—was tested under nominal and
worst-case conditions, including simulated clock drift, jitter,
and protocol edge cases.

o Oversampler

— The oversampler was validated by injecting known
bit patterns and checking the resulting 5-sample
output window. The window updated every cycle,
and each sample within the window was verified
to be temporally ordered and logically correct with
respect to the injected serial stream. Tests confirmed
that a correct oversampled window was retrieved for
each bit

« CRD
The CDR block was tested using oversampled input win-
dows that simulate phase drift and transition ambiguity.
Three main categories of tests were applied:

— Transition Detection Accuracy: Inputs like
0b11110, 0b00001, and 010001 were used
to check that transitions are correctly flagged and
mapped to sampling phases.

— Phase Selector Logic: Validated that the selector
updates its sampling index based on the edge po-
sition and properly retains the prior index when no
transition is present.

— Edge Case Handling: Inputs like 011011 and
0b00100 were used to stress-test multi-edge and
symmetric transitions. In these cases, the design
correctly applies a soft voting mechanism across
adjacent windows to stabilize sampling.

— Insert/Drop Signal Generation: We verified that
the CDR module emits correct insert or drop sig-
nals when drift is emulated by introducing early or
delayed transitions over multiple windows.

e Add-Drop FIFO (AD-FIFO):
The AD-FIFO was validated using several targeted test
cases in Chisel to ensure correct functionality and bound-
ary safety.

— Normal Operation Test: Sequential bits were fed
into the FIFO and observed from the midpoint token
to confirm basic shift and pass-through behavior.



— Drop Case: Simulated a duplicated bit by asserting
the drop signal mid-stream. Verified that the FIFO
correctly skipped a value and realigned the output.

— Insert Case: Triggered an insert cycle and validated
that a dummy bit (inverse of upcoming bit) was
inserted, and the token advanced as expected.

— Mixed Flow: Combined insertions, drops, and nom-
inal shifts to confirm multi-cycle transitions across
FSM states. Output was compared against ground-
truth bit streams.

— Clamp Behavior - Insert Upper Bound: Drove the
token to the end of the buffer and triggered inserts.
Verified that the token was clamped and no overflow
occurred.

— Clamp Behavior - Drop Lower Bound: Forced
token to buffer start and asserted drops. Verified
clamping and safe behavior under extreme frequency
offset.

— Output Initialization Delay: Confirmed that the
output does not reflect valid recovered bits until the
FIFO is sufficiently primed, to ensure proper warm-
up latency.

o Integration Testing

— Simulate end-to-end flow from AFE input to RX
Logic handoff with a PLL reference clock.

— Perform error injection (bit errors, jitter, clock
glitches) and validate system recovery, similar to
CRD-level testing.

— Evaluate overall system resilience under worst-case
timing and jitter conditions (e.g., £1000 ppm).

* Three scenarios are tested:
1) Input clock is slower than expected (—1000
ppm)
2) Input clock is exactly matching (0 ppm)
3) Input clock is faster than expected (41000
ppm)
* For each scenario, the system generates 20,000
random bytes and verifies correctness.

VII. PPA SUMMARY

« Data Rate Support: Verified operation at 480 Mbps (Hi-
Speed USB) and 12 Mbps (Full-Speed), meeting full USB
2.0 PHY requirements.

o Lock Time: The architecture achieves a lock time of zero
cycles, because of its feed-forward design. Bit recovery
begins immediately but there is a warm-up latency of 12
cycles for the Add-Drop FIFO.

« Bit Error Rate (BER): Verified BER < 10~'2 in simu-
lation across 20,000+ bytes with #1000 ppm frequency
offset. No bit errors were detected.

« Jitter Tolerance: Full system operation was confirmed
with drift up to 1000 ppm and oversampled windows
containing multiple transitions or CIDs.

Synthesis using the SKY 130 process produced the following
post-elaboration area estimates:

Module Cell Count  Total Area (um?)

Oversampler 11 328

Coarse Data Recovery (CRD) 77 2,730

Add-Drop FIFO 188 6,674

Total 277 9,969
TABLE 1

AREA BREAKDOWN OF SYNTHESIZED MODULES

Full post-synthesis and gate-level power analysis was not
completed due to time constraints and issues with the HAM-
MER process and Volutus. However, based on related literature
[1], we would expect an estimated power consumption of less
than 10mW at 480 Mbps.

VIII. CONCLUSION

This report presents a robust digital CDR solution for USB
2.0 using blind oversampling. The addition of an AD-FIFO
improves reliability by dynamically handling timing errors.
Implemented in SKY130, the design is optimized for low
power and efficient area utilization. Future work will focus
on full-chip integration and further power optimizations.
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