Priority-Aware NoC DVFS under Power Caps

Yash Kodali Evan Li Nathan Sutherland
University of California, Berkeley University of California, Berkeley University of California, Berkeley
yash.kodali @berkeley.edu evan.li@berkeley.edu nathan.sutherland @berkeley.edu

Abstract—As warehouse-scale systems increasingly rely on
power capping to manage energy costs and infrastructure limits,
Network-on-Chip (NoC) resources must be throttled efficiently.
However, conventional uniform Dynamic Voltage Frequency Scal-
ing (DVFS) policies fail to distinguish between latency-sensitive
control traffic and throughput-oriented batch workloads, leading
to severe tail-latency violations. As such, there is a need for strate-
gies that enable power-constrained NoCs to provide performance
efficiency for traffic classes without violating global power caps.

This paper presents a Priority-Aware NoC DVFS framework
designed to enforce power caps while selectively preserving the
performance of critical traffic. We utilize the SNIPER multi-core
simulator to generate network traces from both batch and control
class benchmarks from PARSEC and TailBench++ respectively.
These traces are evaluated through a cycle-accurate BookSim
2.0 interconnection network simulation to compare three distinct
control paradigms: a reactive hardware controller, a queue-
theoretic PID controller, and a model-predictive performance-
targeted controller.

Our experimental results show that class-aware DVFS reduces
control-class P99 latency under power caps relative to uniform
throttling while complying to the power-budget. This work
provides a path for managing NoC power without compromising
the responsiveness of critical data center services.

Index Terms—Warehouse-scale computing, power capping,
network-on-chip, DVFS, tail latency, quality of service

I. INTRODUCTION

Warehouse-scale computers (WSCs) increasingly operate
under site-level power caps imposed by electrical provisioning
and cooling limits. When aggregate demand approaches these
limits, operators enforce caps by throttling lower-priority work
so that user-facing services continue to meet strict tail-latency
service-level objectives (SLOs) [1]-[3]. At the processor level,
the same constraints appear as tight power/thermal envelopes
that motivate fine-grained power management inside the chip.
As core counts increase, on-chip data movement and intercon-
nect activity become a major contributor to system power and
performance [5].

One straightforward way to enforce a chip power cap is
to throttle components uniformly. In the context of NoCs,
uniform throttling means reducing the frequency (and voltage)
of all routers by the same factor to meet a power limit.
While effective at capping power, this approach can needlessly
degrade performance — especially for latency-critical traffic -
because it slows down every network packet uniformly. In
many applications, on-chip traffic is heterogeneous: certain
control messages require low latency, whereas batch or bulk
data transfers can better tolerate delays. Treating all network
traffic the same under a power cap fails to account for

these differing requirements. As a result, latency-sensitive
transactions can suffer unnecessary slowdowns, potentially
violating service-level objectives (SLOs), even if other parts
of the network have slack.

We can intelligently throttle less critical traffic while pre-
serving performance for critical flows, via Dynamic Voltage
and Frequency Scaling (DVFEFS) on the NoC. DVES allows
modulating the supply voltage and clock frequency of router
hardware, trading off performance for power savings in a
controllable way [9]. By lowering frequency/voltage on parts
of the NoC, dynamic power consumption can be reduced
(roughly quadratically with voltage). Our approach is to lever-
age fine-grained DVFS domains in the NoC to balance network
latency and saving enough power to meet the cap. We adjust
the frequency of different region domains or individual routers,
independently, based on their workload and traffic class. For
example, routers primarily handling best-effort batch traffic
can be throttled more when needed, freeing power headroom
to keep the critical control traffic flowing with low latency.

We explore the question of how a priority-aware NoC DVFS
policy can keep control-class packets within their SLO while
meeting the power budget, using a trace-driven, cycle-accurate
methodology: a 64-core Sniper configuration generates class-
tagged NoC packet traces, and BookSim 2.0 simulates a
mesh/flatfly NoC with multi-domain DVFS actuation [6],
[7]. We compare a uniform-throttling baseline against three
families of controllers: (i) a low-cost reactive hardware-style
policy, (ii) a queue-theoretic feedback controller, and (iii) an
optimization performance-targeted controller. We study how
these control policies affect the latency and stability of network
traffic across different topologies, packet injection rates, and
power caps.

II. PROBLEM SETTING
A. Control vs. batch traffic and SLO definition

We model two packet classes. Control-class packets (class
0 in our traces) represent latency-sensitive messages whose
delay can directly stall cores or elongate critical paths (e.g., co-
herence commands/acks, synchronization). Batch-class pack-
ets (class 1) represent throughput-oriented transfers (e.g., bulk
data movement or cache-line payload responses) that can
tolerate additional latency. This two-class abstraction matches
WSC power-management practice, where batch work is typi-
cally slowed first during power emergencies [2]. Since absolute
cycle targets vary by microarchitecture, we define the control
SLO relative to a practical baseline: do no worse than uniform

NoC throttling at the same power cap. A priority-aware policy
is successful if it stays power-safe while reducing control-class
P99 versus uniform DVFS, accepting some batch performance
loss if needed.

B. Microarchitectural Considerations: Flit Reordering and
FIFOs

a) Why this matters under NoC DVFS: Applying DVFS
to routers and links changes the service rate of buffers and
arbiters without changing the arrival process (packet injec-
tion). When DVEFS is applied heterogeneously across domains
(e.g., per-router or per-region), adjacent routers may operate at
different effective speeds. This creates transient rate mismatch
at domain boundaries, where an upstream router can deliver
flits faster than the downstream router can drain them (or vice
versa). The mismatch amplifies queueing and can manifest as
head-of-line (HoL) blocking for latency-critical control traffic,
even if average utilization is moderate. Therefore, DVFS-
aware design must explicitly consider buffering, backpressure,
and ordering constraints.

b) Flit-level Behavior and Ordering: In wormhole
routers, packets are decomposed into flits that traverse the
network subject to flow control. Many architectures preserve
in-order delivery per flow/VC, but DVFS-induced stalls can
cause flits of different packets and/or different classes to
interleave differently at routers, especially when: (i) adaptive
routing is enabled, (ii) VCs are shared across classes, or
(iii) arbitration priorities change dynamically based on class-
aware policies. If the model allows multiple paths or multiple
outstanding packets per flow, differences in per-hop service
rate can also create packet-level reordering at the destination
unless additional constraints are enforced.

¢) FIFO design points in the simulator/model.: To keep
the evaluation faithful while avoiding artifacts, we adopt the
following model assumptions:

o Per-VC input FIFOs. Each input port maintains per-VC
FIFOs with credit-based backpressure; DVFS scales the
dequeue/service rate (pipeline progress) but does not alter
credit semantics.

o Class separation. Control (class 0) and batch (class 1)
traffic are either assigned dedicated VCs or use a shared
VC with strict-priority arbitration. Dedicated VCs elim-
inate cross-class HoL blocking at the expense of VC
resources; shared VCs more closely mimic deployments
where QoS is enforced by priority alone.

o Boundary buffering. At DVFS domain boundaries, we
ensure sufficient buffering to absorb short rate mis-
matches. In practice, this is modeled via input FIFO depth
and/or an explicit boundary FIFO.

d) Implication for control objectives: These microarchi-
tectural effects directly tie into our control policy. A DVFS
reduction in a congested region increases effective queuing de-
lay superlinearly near saturation, so policies that rely purely on
average occupancy can inadvertently violate control-class P99.
Conversely, targeted DVFS increases in hot spots can “unlock”
blocked FIFOs and reduce tail latency without increasing

system-wide power, motivating domain-level actuation rather
than uniform throttling.

III. RELATED WORK
A. Priority-aware power capping in WSCs

WSC power capping must account for workload priority
to protect user-facing tail latency. CapMaestro proposes a
scalable, closed-loop, priority-aware control architecture that
shifts power budget from low-priority to high-priority work
across the power distribution hierarchy [1]. Thunderbolt tar-
gets cluster-scale power caps by throttling batch tasks “just
enough” while preserving serving QoS, enabling safe power
oversubscription [2]. At the single-node level, Rubik demon-
strates that fast analytical models can guide power allocation
to protect latency-critical work under a cap [4]. Bhattacharya
et al. highlight that data center power demand can change
faster than existing controllers can react, and that instability
under power capping can cause dramatic latency degradation
[3]. Rubik demonstrates that fast, model-based power control
can preserve tail latency for colocated latency-critical services
while improving efficiency [4].

B. NoC DVFS and power budgeting

NoC DVFS has been studied extensively, often using utiliza-
tion or buffer occupancy driven reactive policies.Early closed-
loop formulations for NoC power management treat DVFES as
a control problem with estimation and feedback [8]. Hesse et
al. argue that purely reactive DVFS is limited and improve
prediction by leveraging coherence protocol information to
anticipate NoC demand [9]. At the budgeting level, PEPON
proposes hierarchical allocation of a chip-wide power budget
to NoC routers to improve performance under a cap [10].
Optimization and control-inspired approaches for multi-VFI
systems also exist [11]. Our work differs in focus: we study
priority-aware NoC DVEFS specifically through the lens of
WSC-style control-vs-batch QoS under a hard power cap, with
tail-latency as the primary metric.

C. NoC QoS and traffic differentiation

QoS mechanisms such as priority arbitration, virtual-
channel partitioning, and bandwidth reservation are also
widely used to isolate latency-sensitive traffic. Commercial
on-chip fabrics may expose multiple traffic classes to reduce
queuing for critical messages [12]. Our approach is comple-
mentary: QoS scheduling reduces contention given a fixed
service rate, whereas DVFS changes the service rate itself.
Under a power cap, priority-aware DVFS can be viewed as
redistributing limited service capacity to better satisfy control-
traffic tail-latency constraints.

IV. UNDERSTANDING POWER CAPS IN WSCs

Datacenter operators provision power delivery and cooling
for a fixed envelope, then enforce sife-level caps to avoid
overload, reduce operating cost, and enable safe oversub-
scription. Real power demand can change rapidly, and naive
throttling can destabilize latency-sensitive services [3]. As a

result, modern WSC power managers explicitly differentiate
priorities, throttling batch work more aggressively than serving
traffic during cap events [1], [2].

At the node level, site-level constraints translate into per-
server or per-socket budgets. Hardware mechanisms and soft-
ware control loops allocate these budgets across subsystems
(cores, caches, memory, and fabrics). In this paper we focus
on the NoC share of the node budget and treat it as a hard cap
over the policy decision epoch. All policies are evaluated under
the same NoC power cap to isolate the impact of allocation
decisions on control-class tail latency.

V. NoC DVFS BACKGROUND

Dynamic voltage and frequency scaling (DVFS) trades
performance for power by adjusting supply voltage V' and
clock frequency f. Dynamic power scales approximately as
P o V2, so reducing both can substantially cut power at the
cost of lower service rate. Applied to a NoC, DVFS controls
each router’s service capacity: lowering f increases per-hop
serialization latency and can increase queueing delay when
offered load approaches service capacity.

A. Actuation granularity

DVFES can be applied globally (one domain for the entire
NoC) or in multiple voltage-frequency islands that scale
independently. Finer granularity enables targeted throttling:
domains that primarily carry batch traffic can be slowed while
preserving frequency along control-critical routes. However,
finer granularity also increases hardware cost and can com-
plicate control. Due to a limitation of time, we focus our
evaluation of router-level domain control to understand and
quantify the returns of our control policies.

B. Transition latency and control stability

DVES transitions are not instantaneous: voltage changes
require regulator settling, and frequent toggling can waste
time and harm latency. At WSC scale, demand variability and
control-loop stability are central challenges for power capping
[3]; similar issues appear on-chip when DVFS is driven by
bursty injection and localized congestion.

a) Hysteresis, quantization, and actuation granularity.:
NoC DVES typically supports only a finite set of frequency
points and may apply per-domain rather than per-router in
real systems. Quantization can cause limit cycles when the
operating point hovers near a threshold. To mitigate this, we
incorporate:

« Hysteresis on occupancy/latency thresholds to prevent
frequent toggling,

o Rate limiting (e.g., max A f per epoch) to reduce oscil-
lations,

¢ Minimum dwell time at a DVFS point to amortize
transition overhead.

b) Mapping DVFS to NoC service.: In the model, DVFS
scales the effective router pipeline rate and link traversal rate,
thereby scaling the service rate | of queues. From a queue-
ing perspective, reducing frequency increases the utilization
p = A/p, and tail latency grows rapidly as p — 1. This
motivates policies that: (i) protect control traffic via an SLO-
aware override (boost when control P99 approaches the SLO),
and (ii) avoid globally reducing 4 uniformly when congestion
is localized.

C. DVFES as a NoC service control knob

From a queuing perspective, each DVES decision changes
the service rate p of the router pipeline. When the offered
load X is low, reducing f primarily increases serialization
latency. When A approaches p, queuing delay dominates and
tail latency can rise sharply. Priority-aware DVFS aims to keep
1 high where it most benefits control-class P99 (hot spots
and critical routes), while reducing p in regions that primarily
affect batch throughput.

VI. INFRASTRUCTURE
A. Overview

The simulation framework framework follows a multi-stage
process that separates DVFS policy development with trace
generation. This separation allows us to test to tweak and
experiment with policies quickly without having to re-run
the entire benchmark every time. First, we feed control and
batch class benchmarks into an x86 simulator, SNIPER to get
network traces. Then, we feed those network traces as well as
a custom DVFS policy into a fast network simulator, BookSim
2.0 that captures metrics.

Control Class Batch Class
Benchmark Benchmark
SNIPER Simulator
Trace Generator

Fig. 1. Infrastructure Setup Flowgraph

BookSim 2.0
Interconnection
Network Sim

Network
Traces

B. Benchmarks

To evaluate how power management affects different types
of data center traffic, we needed to simulate two specific
types of workloads: Control-class and Batch-class. In modern
data centers, these different tasks often run on the same
hardware. However, they have very different goals. Control-
class tasks, like web search or voice recognition, need to be
extremely low latency. Batch-class tasks, like compressing files
or processing images, need high throughput but the short-term
time requirement to finish execution is not as important. By
testing both together, we can see if aggressive power saving
for the batch tasks affects latency-sensitive control jobs.

For our benchmarks, we chose TailBench++ for the control
class and PARSEC for the batch class. From TailBench++,
we used Xapian (search) and Sphinx (speech) because they act
like real internet services that get bursts of user requests. From
PARSEC, we used VIPS and Dedup because they move a lot of
data around, which puts a heavy load on the Network-on-Chip
(NoC). This setup lets us test if our power-saving policies can
differentiate between “urgent” traffic and “background” traffic.

Initially, we planned to use a suite called DCPerf, a set
of benchmarks from Meta that closely mimics datacenter
workloads. While DCPerf is very realistic, it is designed to run
on a “full-system” simulator, which simulated benchmarks too
slow for our schedule. Instead, we switched to the SNIPER
multi-core simulator. SNIPER allowed us to skip the slow parts
of full-system simulation and generate network traces much
faster.

C. Trace Generation

In order to simulate a NoC, we need to first generate
traces from the benchmarks. We initially explored the gem5
simulator to perform full-system cycle-accurate simulations;
however, due to significant time constraints and the immense
computational overhead required for many-core configura-
tions, we transitioned to the SNIPER multi-core simulator for
the trace generation phase.

SNIPER is a a parallel multi-core simulator with the detail
of cycle-level simulation that uses interval simulation. It
groups instructions into intervals between major events like
branch mispredictions or cache misses, which greatly saves
simulation time. In comparison tests, Sniper has been shown
to be the fastest and most accurate among contemporary x86
simulators like gem5 and PTLsim, though it is slightly less
flexible for modeling entirely new hardware features. [6] This
limitation is not a concern for our study. Since our primary
goal is to generate benchmark network traces, SNIPER’s high
speed and validated accuracy on x86 architectures make it the
most effective tool for our infrastructure.

D. Network Simulator

The second half of our infrastructure uses BookSim
2.0, a cycle-accurate simulator specifically designed for the
Network-on-Chip (NoC). Because we use pre-generated traces
from SNIPER, we can run the same traffic patterns through
BookSim over and over again while changing only the policies
that modify power and frequency settings. This allows us to
see precisely how a site-level power cap affects the latency of
important data packets.

In addition to standard BookSim metrics, we model DVFS
actuation either globally (single DVFS domain) or spatially
(multiple domains, up to per-router granularity). Each router
maintains a continuous freq_scale that controls how many
internal pipeline steps it can advance per BookSim cycle.
Lower freq scale therefore reduces the effective service
rate of routing, VC allocation, switch allocation, and crossbar
traversal, increasing queueing delay and tail latency under
load.

Policies execute at fixed DVFS epochs. During an epoch, the
simulator collects telemetry including total NoC power, per-
router queue occupancies, injection/stall rates, and per-class
latency percentiles. At the epoch boundary, a policy computes
the next frequency scale(s), clamped by dvfs_min_scale
and dvfs_max_scale, and applied to the configured
router_domains. This mirrors a hardware/software DVFS
governor where sensors are sampled periodically and new
operating points are programmed with bounded actuation
granularity.

E. ORION 3.0 power model integration

We integrate the ORION 3.0 power model directly into
BookSim’s IQRouter implementation. When use_orion=1,
each router initializes the ORION model with architectural
parameters from the configuration (e.g., Vdd, Orion_Freq,
flit width, VC count, buffer sizes, arbitration models, crossbar
model, and wire length). The router attaches buffer and switch
monitors to track ingress/egress activity and initializes an
ORION link bus model to estimate link energy. This gives us
an activity-driven power estimate that reflects actual routing,
buffering, and crossbar usage under the current DVFS setting.

At each DVFS epoch, the traffic manager queries each router
for its ORION-based power using the current freq_scale.
Internally, ORION computes average energy per cycle from
the observed buffer writes/reads, converts that to power using
the scaled frequency, and adds a simple link power term based
on output flit activity. These per-router values are summed
into total_power and stored in PowerTelemetry, along
with headroom under the cap. The monitors are reset at the
end of each epoch so that the next update reflects only the
new interval. This ORION-derived telemetry is what drives
our power-capped DVEFS policies and is logged in the en-
ergy/epoch CSVs for analysis.

When ORION is disabled, we fall back to a lightweight
analytic power model that uses power_dyn_base,
power_leak_base, and the configured dvfs_freqgs /
dvfs_voltages (or per-domain lists) to compute dynamic
power proportional to V2f and leakage proportional to
V. This fallback is useful for fast design-space sweeps,
while ORION provides the more detailed per-router power
accounting used in our main experiments.

F. Class-aware scheduling and the DVFS control loop

Our simulator makes policies class-aware end-to-end. Each
injected packet carries a class ID (synthetic traffic, or
trace-defined via node_types in netrace). A pluggable
ClassAssigner interface can override or infer classes
based on source/destination or runtime signals; in our current
experiments we use static, trace-provided class labels. Per
class, ClassConfig specifies a base priority and an optional
latency SLO in cycles. When an SLO is present, we track that
class’s tail latency (P99) and treat it as the control class.

Class awareness also appears in router scheduling. A
StaticPriorityPolicy assigns each flit the class’s base
priority at enqueue time, and a DeadlineBoostPolicy

can temporarily increase a class’s priority when its measured
P99 exceeds its SLO. This creates a fast path for urgent traffic
at arbitration time, while DVFS adjusts the service rate of the
fabric.

Finally, DVFS actuation is applied through a
NetworkControl adapter. Policies output either a
single domain scale (SetDomainSpeed) or per-router
scales (SetRouterSpeed). Each router tracks a continuous
freq scale; lowering this value reduces the router
pipeline progress executed per simulator cycle, increasing
effective per-hop service time and queueing. Domain and
per-router bounds are enforced via dvfs_min_scale,
dvfs_max_scale, and a configurable router_domains
partitioning. At each DVFS epoch, the simulator summarizes
telemetry (power, occupancy, injection/stall rates, and per-
class latency percentiles) and the controller computes new
scale(s) for the next epoch.

VII. DATA
A. Trace Format

2001 0 78 4 0

14 52 51 14 1 1
24 4 0 120 o 0
15 51 50 14 1 1
30 0 63 14 1 0O
16 50 49 14 1 1
31 63 62 14 1 O
17 49 48 14 1 1

Fig. 2. Example Trace Snippet

This is an example SNIPER-generated network trace that
includes both batch-class and control-class workloads in a
line network. This interleaving provides a pseudo-realistic
representation of the system operating with both workload
types simultaneously. The formatting of these traces is shown
below.

index 0 cycle #

index 1 sender 1D

index 2 receiver 1D

index 3 packet size

index 4 latency

index 5 | control (0) / batch (1)
B. Metrics

We collect both power and QoS-oriented performance
telemetry at DVFS epoch boundaries: (i) total NoC power

under the current frequency configuration, (ii) per-router input-
buffer occupancy (and derived congestion signals), (iii) per-
router injection and stall rates, (iv) per-class delivered-packet
latency percentiles (P50/P95/P99), and (v) per-class injection
and throughput (delivered packets/flits per epoch). These sig-
nals are sufficient to implement purely power-driven baselines
(uniform throttling) as well as class-aware controllers that
explicitly protect control-class P99 under a hard cap.

VIII. DVFS CONTROL POLICIES

All DVES controllers run in discrete DVFS epochs. During
an epoch, the NoC executes at the currently programmed
frequency scale(s). At the epoch boundary, the simulator sum-
marizes telemetry and the controller computes new scale(s)
for the next epoch, subject to a hard NoC power budget. We
study two baseline policies and three increasingly class-aware
controllers.

A. Baselines

Static DVFS (no control). This baseline fixes the NoC
frequency scale (typically 1.0) and never adapts. It serves as
a reference point for latency and power when the control loop
is disabled.

Uniform throttling (power-cap baseline). Uniform throt-
tling enforces the NoC power cap by applying a single global
frequency scale to all routers. If total NoC power exceeds
the cap, the policy reduces this global scale (e.g., linearly)
until the estimated power meets the budget; if the cap is not
exceeded, it runs at the maximum scale. Uniform throttling is
intentionally not class-aware: it reacts only to total power and
cannot protect control-class tail latency.

B. HWReactive: threshold governor with SLO override

HWReactive models a lightweight hardware DVFS gover-
nor. Each epoch it measures a configurable congestion signal
X (e.g., average queue occupancy, injection rate, stall rate,
or observed latency) and compares it to low/high thresholds
(Tow, Thigh) with hysteresis. In single-domain mode it toggles
between (fiows fhigh):

fmax if L% [n] > SLO
fmax if L& [n] ~ SLO
fIn+1] = < foign if X[n] > Thign (1
fiow if X[n] < Tiow
f[n] otherwise (hold)

The key class-aware feature is the SLO override: if the control
class P99 latency exceeds (or is close to) its target, the
controller forces a high-frequency state to preserve slack.

In multi-domain (per-router) mode, HWReactive computes
a per-router metric M; and normalizes it to a weight w;
(one simple choice is w; = ZLMJ) It then interpolates each
router’s scale: ’

fi = fiow + Wi - (frigh — fiow)s fi € [fiow, foigh]- ()

Busy routers receive higher frequency, while idle routers are
throttled more aggressively, concentrating power where it most

reduces queueing delay. The SLO override can still bias the
overall allocation upward when control-class tail latency is at
risk.

C. QueuePID: occupancy-regulating feedback loop with bud-
get normalization

QueuePID treats DVFS as service-rate control and regulates
router input-buffer occupancy around a target. Let O;[n] be the
measured occupancy of router/domain ¢ at epoch n and T;[n]
be its target. The error is e;[n] = O;[n] — T;[n]. A per-router
PID loop computes a frequency update:

Pi[n] = Kpe;[n] 3)
Li[n] = Ln — 1] + Kre;[n] 4)
D;[n] = Kp(ei[n] — e;[n — 1)))
Afi[n] = P;[n] + I;[n] + D;[n] (6)
filn+1] = clamp(fi[n] + Afi[n], finin, fmax)- (7

To bias power toward hot spots, QueuePID uses adaptive oc-
cupancy targets: routers with higher relative load are assigned
lower T; (forcing speed-up), while lightly loaded routers are
assigned higher 7; (allowing slowdown). After computing
candidate f;, the controller enforces the global power cap by
a normalization step that preserves relative differences:

Pca .
L Vi fi+ afi (8)

if Pyoc > Pcapa o=
Proc

Class awareness enters through the same control-class P99
feedback used by HWReactive: when LS violates (or ap-
proaches) its SLO, QueuePID biases the update upward and
can force fiax in the single-domain case. Conceptually, oc-
cupancy regulation becomes subordinate to SLO protection
whenever they conflict.

D. Perflarget: direct P99 targeting

PerfTarget closes the loop around the metric of interest:
control-class tail latency. Let L§i![n] be the measured control
P99 at epoch 1 and Lige; be the setpoint. Define latency error
ern] = L& n] — Liarger. A simple proportional form is:

er[n]

fln+1] = clamp(f[n] + Ky, - I
target

) fmirn fmax)) (9)
implemented with step sizes and hysteresis in practice. If
the control class has no completed packets in an epoch (no
P99 sample), the controller holds its previous decision rather
than making a blind adjustment. When the control class has
ample slack and power headroom, PerfTarget gently reduces
frequency to reclaim power.

In per-router mode, PerfTarget uses occupancy as a spatial
hint to localize DVFS action under a tight cap: when P99 is
high, it boosts high-occupancy routers (likely on the critical
path) while throttling cold routers to remain within the budget.
This approximates a constrained optimization of “meet Liarget
subject to P,y without an expensive solver.

E. Why multi-domain, class-aware DVFS helps

Across all three controllers, multi-domain actuation is the
key feature that uniform throttling is missing: it allows the
policy to reallocate limited power toward routers that most
influence queueing delay for latency-critical traffic, while
extracting power from regions that primarily affect batch
throughput. Combined with class-aware telemetry (control
P99) and, optionally, priority boosting at arbitration, these
policies aim to preserve control-class tail latency under site-
level caps where uniform DVFS would degrade all traffic
equally.

EVALUATION

In this section, we evaluate whether priority-aware NoC
DVEFS controllers can (i) satisfy a hard NoC power budget
derived from a site-level cap, (ii) keep control-class tail latency
(P99) within a tight SLO, and (iii) outperform the conventional
baseline of uniform throttling under the same budget. I focus
on two families of metrics: (a) actuation behavior (the
frequency scales selected under each power cap) and (b) user-
visible performance (control-class P99 latency).

F. Experimental Setup and Metrics

a) Topology, workload, and classes: All results in this
section use the flatfly topology. Traffic is split into two classes:
control (class 0) and batch (class 1). Control traffic repre-
sents latency-critical RPCs and coordination; batch represents
throughput-oriented background work. The simulator tracks
per-class latency distributions and reports P99 control latency
as the primary SLO metric.

b) Power caps and DVFS actuation: Each experiment is
run under a hard NoC power cap (x-axis in W). Controllers
output a per-domain frequency scale f € (0, 1]; the plots report
the average frequency scale across time and domains unless
otherwise noted. All policies are constrained to remain within
the specified budget.

c) Policies compared:

o Uniform: A baseline that applies the same frequency
scale to all routers/domains to meet the cap.

« HW Reactive: A threshold-based reactive controller
driven by queue occupancy.

e Queue PID: A feedback controller that uses PID control
on queue occupancy relative to a target.

o Perf Target: A performance/SLO-oriented controller that
explicitly biases actuation to meet control-class tail la-
tency.

d) Load levels: To expose behavior across congestion
regimes, I sweep multiple offered loads (legend “inj”), which
correspond to increasing injection intensity. Conceptually,
these runs move the network from lightly loaded (delay dom-
inated by base hop count) to heavily loaded (delay dominated
by queuing and contention).

G. Actuation Behavior: Frequency Scale vs. Power Cap

Figure 3 shows the average frequency scale each policy
selects as the power cap relaxes.

DVFS Frequency vs Power Cap

=@= Uniform
1.0 HW Reactive
=d—= Queue PID
@~ Perf Target
0.9
Q
[
o
9 08
>
7]
C
[
=
g
T 07
[
o
©
g
< 06
05
04

0.3 04 0.5 0.6 0.7 0.8 0.9 1.0
Power Cap (W)

Fig. 3. Average DVFS frequency scale selected by each policy vs. the NoC
power cap (flatfly).

Control Class P99 Latency vs Power Cap (Flatfly)
Uniform HW Reactive

Control P99 Latency (cycles)

Control P99 Latency (cycles)

0 04 05 08 0o 10

[[
Power Cap (W)
Queue PID

08 07
Powar Cap (W)
Perf Target

e 002
- 0t

TN

[01
Power Cap (W)

Control P93 Latency (cycles)

0
Power Cap (1)

Fig. 4. Control-class P99 latency vs. power cap for multiple injection levels
(flatfly). Each panel corresponds to one DVFS policy.

a) Uniform actuation behavior: At the tightest caps (0.3—
0.4W), Uniform drops to a very low average frequency (around
0.5). This is expected as the uniform policy has only one
degree of freedom (a single global scale), so meeting the cap
forces it to slow everywhere, including routers that are not on
the critical congestion path. As the cap relaxes to 0.5-0.7W,
Uniform jumps upward quickly (to ~0.8-0.9), then approaches
1.0 by 0.8-1.0W.

b) HW Reactive spends more frequency early to avoid
instability: HW Reactive stays notably higher than Uniform
at the tightest caps (roughly mid-0.6s vs. 0.5). The key
mechanism is that occupancy thresholds effectively act as an

Control Class P99 Latency vs Power Cap (Flatfly)

—@- Uniform
- HW Reactive
=&~ Queue PID

~@- Perf Target

Control Class P99 Latency (cycles)

03 04 05 06 0.7 08 0.9 10
Power Cap (W)

Fig. 5. Aggregate view: control-class P99 latency vs. power cap (flatfly).
Lower is better.

early-warning signal: when queues start to build, HW Reactive
boosts frequency before the network enters a runaway queuing
regime. It effectively uses some of the limited power budget
to prevent the system from crossing the high-utilization cliff
where tail latency explodes.

¢) Queue PID can become conservative at high caps:
Queue PID rises gradually with cap up to about 0.7W, but
then drops its average frequency at 0.8—-1.0W. This is an
issue due to over-trusting its queue occupancy signal. When
average occupancy falls below the target (which is common
once congestion eases), the PID loop drives the actuation
downward to “save power,” even when the cap would permit
more headroom. We can see that average occupancy is not
a tail-latency guarantee. Under bursty control traffic, it is
possible to have low average occupancy but still experience
transient queue spikes that dominate P99. That mismatch is
also what shows up in the latency plots later.

d) Perf Target opts for saving power after achieving
target tail latency: Perf Target stays relatively high at low caps
(low/mid-0.7s) and then flattens around ~0.9 beyond 0.7W.
This pattern is consistent with an SLO-oriented goal: once the
controller has achieved the desired tail-latency region, it stops
“chasing” maximum frequency and instead maintains a stable
operating point with margin for bursts. This policy is the most
stable performance under the cap.

H. Primary Result: Control-Class P99 Latency vs. Power Cap

Figure 5 summarizes control P99 latency as the cap in-
creases.
a) Uniform has poor tail latency under tight caps:
Uniform throttling shows extremely high P99 at low caps and
then a dramatic drop around 0.7W.

e Under tight caps, uniform scaling reduces service rate
v everywhere. Even if offered load A is unchanged,
utilization p = \/p increases. As p — 1, queues become
very sensitive to bursts, and P99 can grow by multiples
even when averages look stable.

o Once the cap is relaxed enough to push p away from 1 on
the critical links/routers, queueing delay collapses rapidly,
producing the sharp improvement around the knee.

We can see that the uniform throttling policy is a brittle
strategy as it behaves reasonably only once the cap is high
enough that it’s not truly constrained.

b) HW Reactive improves over Uniform where it matters:
The HW Reactive policy yields substantially lower P99 than
Uniform at the most constrained caps. This happens because
it prevents persistent queue buildup by boosting frequency in
response to congestion signals. The policy is still not per-
fect—P99 remains elevated at very low caps—but compared
to Uniform it avoids the worst-case runaway queuing that
dominates tail latency.

c) Queue PID shows an instability region at higher
caps: Queue PID improves P99 as caps increase up to about
0.7W, but then gets worse beyond that (its P99 rises at 0.8-
1.0W). This aligns with the counterintuitive frequency drop in
Figure 3. The most plausible explanation we have is that it is
a control-theoretic mismatch:

o The PID loop is stabilizing average occupancy around a
target.

o When the system is lightly loaded, average occupancy
naturally falls and the controller responds by reducing
frequency.

o That reduction removes burst headroom and increases the
probability of transient queue spikes, which dispropor-
tionately affect P99.

So Queue PID can be “locally optimal” on its chosen signal
(occupancy) while being globally suboptimal on the actual
goal (tail latency).

d) Perf Target dominates P99 across caps: Perf Target
achieves the lowest control-class P99 latency across nearly all
caps. The implication is that explicit performance targeting is
more robust than trying to infer tail behavior from occupancy
alone. In particular, Perf Target seems to provide:

« Burst tolerance: it retains enough frequency headroom
to absorb short control bursts.

« Stability: it avoids oscillations in actuation that would
otherwise create periodic queuing spikes.

« Cap efficiency: it does not need to run at full frequency
to keep P99 low; it finds a stable mid/high point.

L. Sensitivity to Load: P99 vs. Cap at Multiple Injection Levels

Figure 4 breaks the story down by injection level (offered
load), which is essential because tail latency behavior is highly
non-linear near saturation.

a) Uniform throttling: In the Uniform panel:

o At low injection (inj=0.2), P99 is comparatively modest
and decreases smoothly with cap. This is expected: the
network is not near saturation, so DVFS mainly adds a
small service-rate penalty.

o At medium injection (inj=0.4), P99 is enormous at 0.3—
0.6W and then collapses around 0.7W. This indicates that
inj=0.4 sits near the saturation boundary for the flatfly

under uniform scaling; tight caps push it into the unstable
regime.

« At high injection (inj=0.6), the network remains stressed
even at higher caps, producing elevated P99 despite more
power headroom.

This is the clearest evidence that uniform DVES is not graceful
under pressure as it fails exactly when there is a high load +
tight cap.

b) HW Reactive policy: HW Reactive reduces P99 sub-
stantially at medium injection compared to Uniform, especially
in the constrained regime. Instead of needing the cap to
reach the knee before improving, it begins improving earlier
(because it responds to congestion proactively). However, the
curves still show a load-dependent region where P99 is high
at low caps. If the cap is simply too low, there isn’t enough
power budget to prevent queues from growing during sustained
contention.

c) Queue PID policy: Queue PID improves with cap
up to about 0.7W for inj=0.4, but then P99 rises again at
0.8—1.0W. This again points to the limitation of controlling
occupancy as a proxy for tail latency. Under bursty traffic,
average occupancy can be low while P99 is dominated by
rare spikes. A controller that reduces frequency in response
to low average occupancy can unintentionally increase spike
amplitude and frequency.

d) Performance Target policy: Perf Target is the most
consistent across injection levels:

« For inj=0.2, P99 stays low and largely insensitive to cap
once beyond modest headroom.

o For inj=0.4, it avoids the extreme blowups that Uniform
experiences at tight caps and steadily improves with cap.

J. Conclusion

These plots collectively support three conclusions.

a) (1) Uniform throttling is a weak baseline under site-
level caps: Uniform DVFS creates a global service-rate reduc-
tion that pushes the network into the high-utilization regime
where P99 grows explosively. It performs acceptably only after
the cap crosses a knee.

b) (2) Priority-aware, localized control improves tail
latency under tight budgets: HW Reactive demonstrates that
even a simple, congestion-aware strategy can significantly
reduce control P99 under the same cap by spending power
where queues form, rather than penalizing the whole fabric.

¢) (3) The control signal matters: tail-latency targeting
beats occupancy targeting: Queue PID illustrates that sta-
bilizing occupancy does not necessarily stabilize P99. The
Perf Target policy’s superior results suggest that an explicit
performance objective (control P99 or an SLO margin) is the
right abstraction for WSC-style NoC DVFS under hard caps.

d) Summary: Under site-level-derived NoC power caps,
a policy that explicitly targets control-class tail latency
achieves the best robustness across caps and loads, while
uniform throttling is brittle and occupancy-only PID can mis-
allocate headroom and regress P99 in lightly loaded regimes.

FUTURE WORK

The results we currently have are promising, but they also
lead to some next steps, both to strengthen the evidence and
to push to more robust or realistic designs.

K. Richer Control Strategies

a) SLO-aware multi-objective control: Right now, the
policies effectively optimize one primary objective (control
P99) under a hard cap. In practice, WSCs operators care about
multiple competing goals: control tail latency, batch through-
put, fairness, and stability of actuation (to avoid thrashing). A
useful extension is a multi-objective controller that explicitly
trades off:

min « - P99conror + 3 - slowdownpyen + v - |A S|

subject to the power cap and discrete DVFS states. This would
make the idea of not killing batch jobs completely measurable
and tunable, rather than qualitative.

b) Model-predictive control (MPC) for bursty traffic:
A recurring theme we saw is that burstiness dominates tails.
Reactive thresholding and PID can lag bursts, and occupancy
is often a weak proxy for tail behavior. MPC could be
a good fit here: it can use a short horizon forecast (e.g.,
recent injection history and queue trends) to choose frequency
actions that are stable and anticipatory. Even a lightweight
MPC variant—receding-horizon search over a small discrete
action set—could capture most of the benefit without being
computationally heavy.

¢) Learning-based policies with safety constraints: There
is room to explore reinforcement learning (RL) approaches as
well, but only if the policy is constrained by safety: never
violate the power cap, and never exceed a control SLO by
more than some bound.

L. Better Priority Modeling and Scheduling

a) Beyond two classes: This paper uses a clean control
vs. batch split. Real services may want to have multiple
priority tiers (e.g., interactive, latency-sensitive background,
best-effort batch). Extending the framework to 3—4 classes
would stress-test whether the gains persist when prioritization
is more nuanced than strict binary separation.

b) Dynamic urgency boosting: Static class labeling is a
reasonable starting point, but tail events could also come from
misclassified or temporally urgent traffic (e.g., an RPC that
becomes urgent because it is late). A future iteration could
incorporate urgency boosting based on age, queueing delay,
or remaining slack-to-deadline, and then drive DVFS using
urgency-weighted signals rather than raw occupancy.

¢) Joint DVFS and arbitration: DVFS is only one knob
we chose to focus on. Arbitration policy (strict priority,
aging, deficit round robin) and VC allocation can possibly
dramatically change head-of-line blocking and cross-class
interference. An extension is to treat arbitration parameters
as part of the control action, enabling the policy to trade
“power headroom” against “scheduling headroom” depending
on congestion regime.

M. Expanded Experimental Coverage

a) Workloads closer to production mixtures.: The current
experiments demonstrate clear trends, but an important next
step would be to evaluate on trace mixes that better reflect co-
location: multiple services, multiple batch jobs, and diurnal
shifts in load.

We would want to run:

e More diverse injection patterns (microbursts, phase
changes).

o Mixed topologies and routing modes (deterministic vs.
adaptive).

e Varying domain granularities (per-router, per-quadrant,
per-subnetwork).

This would clarify which conclusions are topology-specific
versus fundamental to DVFES as service-rate control.

b) Batch impact and end-to-end metrics.: This paper
focuses on control P99 because it aligns with the research
question. A next step is to quantify the batch-side cost:
throughput, slowdown, and tail behavior for batch as well.
Ideally we would want to degrade batch gracefully and pre-
dictably.

N. More Realistic DVFS and Power Modeling

a) Transition dynamics and overheads.: One area that
could affect conclusions is DVFS transition modeling. Real
DVES has latency, intermediate steps, and sometimes con-
straints on how frequently transitions may occur. More realistic
modeling would include:

o Non-zero transition time with settling behavior.

« Discrete voltage/frequency points rather than continuous
scaling.

o Switching overheads (energy and/or temporary perfor-
mance disruption).

This would make the “stability vs. responsiveness” story in
the controller design more grounded.

ACKNOWLEDGMENT

We would like to express our sincere gratitude to Professor
Sagar Karandikar for his guidance and support throughout this
project. His expertise in the course CS 294-252: Architectures
and Systems for Warehouse-Scale Computers was instrumental
in shaping the direction of this research. We also want to thank
my classmates for their valuable suggestions and feedback dur-
ing our in-class discussions, which helped refine our approach
to priority-aware power management. Finally, we are grateful
for the resources provided by the University of California,
Berkeley, which made this work possible.

REFERENCES

[11 Y. Li, C. R. Lefurgy, K. Rajamani, M. S. Allen-Ware, G. J. Silva,
D. D. Heimsoth, S. Ghose, and O. Mutlu, “A Scalable Priority-Aware
Approach to Managing Data Center Server Power,” in Proc. IEEE Int’l
Symp. High-Performance Computer Architecture (HPCA), 2019.

[2] S. Li, X. Wang, X. Zhang, V. Kontorinis, S. Kodakara, D. Lo,
and P. Ranganathan, “Thunderbolt: Throughput-Optimized, Quality-
of-Service-Aware Power Capping at Scale,” in Proc. USENIX Symp.
Operating Systems Design and Implementation (OSDI), 2020.

[3]

[4]

[5

=

[6]

[8]

[9]

[10]

(11]

(12]
[13]

[14]

[15]

[16]

A. Bhattacharya, J. M. Culler, R. Kansal, S. Govindan, and S. Sankar,
“The Need for Speed and Stability in Data Center Power Capping,” in
Proc. Int’l Green Computing Conf. (IGCC), 2012.

H. Kasture, D. Bartolini, N. Beckmann, and D. Sanchez, “Rubik: Fast
Analytical Power Management for Latency-Critical Systems,” in Proc.
IEEE/ACM Int’l Symp. Microarchitecture (MICRO), 2015.

V. Adhinarayanan, 1. Paul, J. L. Greathouse, W. Huang, A. Pattnaik, and
W.-c. Feng, “Measuring and Modeling On-Chip Interconnect Power on
Real Hardware,” in Proc. IEEE Int’l Symp. Workload Characterization
(IISWC), 2016.

T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the
Level of Abstraction for Scalable and Accurate Parallel Multi-core
Simulations,” in Proc. Int’l Conf. for High Performance Computing,
Networking, Storage and Analysis (SC), 2011.

N. Jiang, D. U. Becker, G. Michelogiannakis, J. Balfour, B. Towles,
D. E. Shaw, J. Kim, and W. J. Dally, “A Detailed and Flexible
Cycle-Accurate Network-on-Chip Simulator,” in Proc. IEEE Int’l Symp.
Performance Analysis of Systems and Software (ISPASS), 2013.

T. Simunic, S. P. Boyd, and P. Glynn, “Managing Power Consumption in
Networks on Chips,” IEEE Trans. Very Large Scale Integration (VLSI)
Systems, vol. 12, no. 1, pp. 96-107, 2004.

R. Hesse and N. E. Jerger, “Improving DVFS in NoCs with Coherence
Prediction,” in Proc. IEEE Int’l Symp. Networks-on-Chip (NOCS), 2015.
A. Sharifi, A. K. Mishra, S. Srikantaiah, M. T. Kandemir, and C. R. Das,
“PEPON: Performance-Aware Hierarchical Power Budgeting for NoC
based Multicores,” in Proc. Int’l Conf. Parallel Architectures and Com-
pilation Techniques (PACT), 2012.

P. Bogdan and R. Marculescu, “Towards a Science of Cyber-Physical
Systems Design: A Time and Energy Perspective,” ACM Trans. Design
Automation of Electronic Systems, vol. 17, no. 3, 2012.

AMD, “NoC and QoS Requirements (UG994),” documentation, 2025.

A. K. Mishra, R. Das, S. Eachempati, R. R. Iyer, V. Narayanan,
and C. R. Das, “A Case for Dynamic Frequency Tuning in On-Chip
Networks,” in Proc. IEEE/ACM Int’l Symp. Microarchitecture (MICRO),
2009.

M. R. Casu and P. Giaccone, “Rate-based vs Delay-based Control for
DVES in NoC,” in Proc. Design, Automation & Test in Europe (DATE),
2015.

M. R. Casu and P. Giaccone, “Power-performance assessment of differ-
ent DVES control policies in NoCs,” Journal of Parallel and Distributed
Computing, 2017.

P. Juang, K. Skadron, M. Martonosi, and D. Clark, “Coordinated,
Distributed, Formal Energy Management of Chip Multiprocessors,” in
Proc. Int’l Symp. Low Power Electronics and Design (ISLPED), 2005.

